
Tips and Tricks for Macsbug

All of us who program on the Macintosh have lots of little tricks
that we
use to get our job done. Most of these are passed around via e-
mail and the
Usenet News, if they are passed on at all. In an effort to
collect all these
in one place for the benefit of all, I've created this page.
Please submit
your tips to crawford@scruznet.com and I will add them to this
page - with
proper attribution of course.

Contents

Where to get Macsbug
Are there books that teach how to use Macsbug?
Debugging Software on the Macintosh
How to get Macsbug help for free
Breaking While a Particular Application is Executing
Logging Program Execution
Logging Data in Real Time
Using Cursors to Trace Program Execution
Using Touch and Go Breakpoints with Two Monitors
Twiddling Pixels in the Menu Bar
Forcing Testers to Use Macsbug During Beta Testing
The Developer University Debugging Class
Links to Other Macsbug Pages

Where to get Macsbug

 Macsbug is available via anonymous FTP from Apple Computer
from here or
 here. It is included with the two books below, but you will
want to get
 the latest version, especially if you are using a PowerPC.

Are there books that teach how to use Macsbug?

 Yes, among them are:

 o Othmer and Strauss, Debugging Mac Software with
Macsbug,
 Addison-Wesley 1991, ISBN 0201570491. Macsbug included
on disk.
 o Apple Computer Inc., Macsbug Reference and Debugging

Guide version
 6.2, Addison-Wesley 1991, ISBN 0201567687. Macsbug 6.2
included on
 disk.

 While you don't need to know how to write assembly code to
use Macsbug
 effectively, you will need to know how to read and
understand it. Thus
 you will also need to get assembly code reference manuals,
such as:

 o Kacmarcik, Optimizing PowerPC Code, Addison-Wesley
1995, ISBN
 0201408392.
 o Motorola, M68000UM/AD MC68000 8/16/32-Bit MPU User
Manual,
 Motorola Literature Distribution, 1991.

 All of these books may be ordered from the Computer Literacy
Bookstore.

How to get Macsbug help for free

 Contributed by Bill Coderre, bc@wetware.com

 1. Install Macsbug and programmer's key
 2. Reboot the machine. Don't start any apps yet.
 3. Hit CMD-POWER
 4. type "log Macsbug Help <RETURN>"
 5. type "help<RETURN>"
 6. Push space until done.
 7. type "log<RETURN>"
 8. type "g<RETURN>"
 9. Find the file called Macsbug Help on your desktop. Open
it with a
 text editor. Read it.

Breaking while a particular application is executing

 Most applications call WaitNextEvent. While an application
is
 executing, a Pascal string with the name of the application
is placed
 at location 0x910. Thus the first four characters of the
name itself
 begin at location 0x911. Suppose you want to break while

SimpleText is
 active. Enter Macsbug and give the command:

 atb WaitNextEvent 911^ = 'Simp'

 then continue. You will shortly drop into Macsbug at
SimpleText's
 WaitNextEvent call. This is particularly useful when
debugging faceless
 background applications. If the application does not call
 WaitNextEvent, try GetNextEvent instead.

Logging Program Execution

 Contributed by Darren Giles, Terran Interactive,
mars@netcom.com

 Always on the lookout for useful debugging tools & tips, I'd
love to
 share ideas with others on the topic. I'll start out by
offering a
 snippet I've found very useful -- hopefully others will do
the same.

 One thing that's really bugged me about MacsBug on PPC is
that the
 stack crawl has become a much less useful tool. The snippet
below gives
 you the ability to keep track of a list of the last
significant points
 your program has visited. It's a list, not a stack, so you
can also see
 patterns of execution.

 Hardly rocket science, but useful & easy to add. Just call
 DEBUG_STUFF_INIT at startup, then insert a DEBUG_ENTRY
wherever you
 want. To see what's up, especially during a bad hang, just
dm [the
 address that DEBUG_STUFF_INIT dumped out at startup.]

 The conditional compilation means that if you turn of
debugging in your
 final build, the release version of the program won't have
any of this
 code in it.

 [debugstuff.h]
 #define DB_ROUTINES_NBR_ENTRIES 40
 #define DB_ROUTINES_CHARS 16
 typedef char
db_routine_entry[DB_ROUTINES_CHARS];
 #if DEBUGGING
 void DEBUG_ENTRY (char *txt);
 void DEBUG_STUFF_INIT (char *title);
 #else
 #define DEBUG_ENTRY
 #define DEBUG_STUFF_INIT
 #endif

 [debugstuff.c]
 //
///////////
 ////
 #if DEBUGGING
 void DEBUG_STUFF_INIT (char *title)
 OSErr myErr;
 char txt[256];
 long response;

 if (!MacsBugInstalled())
 hi_notify ("MacsBug is not installed… the
debugging log will be
 inaccessible.");

 g_debug_entries= (db_routine_entry*) NewPtrClear
 ((DB_ROUTINES_NBR_ENTRIES+2) * DB_ROUTINES_CHARS);
 memset (&g_debug_entries[0], '=',
DB_ROUTINES_CHARS);
 BlockMoveData (title, &g_debug_entries[0],
strlen(title));
 memset (&g_debug_entries[DB_ROUTINES_NBR_ENTRIES+1],
'=',
 DB_ROUTINES_CHARS);
 sprintf (txt, "Debugging routine list is at 0x
%lx;g", (long)
 g_debug_entries);
 c2pstr (txt);
 DebugStr (txt);

 #endif

 //
///////////
 ////
 // This leaves a line in the debugging entry log.
 // For example, important enter/exit points of routines
 //
///////////
 ////
 #if DEBUGGING
 void DEBUG_ENTRY (char *txt)
 short len;

 // Move the previous entries down one
 BlockMoveData (&g_debug_entries[1],
&g_debug_entries[2],
 (DB_ROUTINES_NBR_ENTRIES-1) *
DB_ROUTINES_CHARS);

 // Clear the new space
 memset (&g_debug_entries[1], 0, DB_ROUTINES_CHARS);

 // Copy in the new entry
 len= strlen (txt);
 if (len > DB_ROUTINES_CHARS)
 len= DB_ROUTINES_CHARS;

 BlockMoveData (txt, &g_debug_entries[1], len);

 #endif

 Hope this does someone some good.

 - Darren

===
=========
 Darren Giles, Technical Director
Terran Interactive
 For info on Cleaner QuickTime compression, visit
http://www.terran-int.com

Logging Data in Real Time

 Contributed by Dave Stone, dstone@chem.utoronto.ca

 I've also used conditional compilation to debug serial
communications
 stuff being processed at interrupt time - something like

 #ifdef DEBUG_MY_ROUTINE
 #define MAX_BUFFER 10000
 char bufffer[MAX_BUFFER]; // or
NewPtr it or something
 long bufCount = 0L;
 #endif
 .
 .
 .
 #ifdef DEBUG_MY_ROUTINE
 if(bufCount < MAX_BUFFER)
 bufCount ++;
 buffer[bufCount] = ch; // ch
is a character read/written through serial
 port

 #endif

 etc. Handy, because you can let it rip for a while to see if
there is a
 consistent pattern in the errors in ch - in my case, a
stream of Midi
 data through a very basic freeware Midi Driver.

Using Cursors to Trace Program Execution

 Contributed by Tom Kimpton, Jostens Learning Corporation,
tom@jlc.com

 One technique that I have used in the past where dropping
into the
 debugger wasn't an option, and logging wasn't getting
flushed in
 time/took too long, was to create a bunch of cursors
numbering 00 - 99,
 and made a call to set the cursor and return the number of
the previous
 cursor:

 routine1()

 short oldCursor = setDebugCursor(15);
 ...

 (void) setDebugCursor(oldCursor);

 This way when the machine froze, the cursor would tell me
what routine
 it had frozen in.

Using Touch and Go Breakpoints with Two Monitors

 I had a bug in which the Mac would occasionally freeze
during shutdown
 without the ability to get into Macsbug. It would only occur
about once
 in twenty reboots.

 The way I dealt with this was to borrow a display card and
hook two
 monitors up to the Macintosh. You can use the Monitors
control panel to
 select which monitor will be used for Macsbug (hold the
option key and
 drag the happy Mac around).

 I wrote a small application that just called
ShutDownRestart(), and
 placed it in the Startup Items folder. Thus, when the Mac
came up into
 the Finder it would immediately reboot. About every twenty
minutes it
 would freeze.

 If you define a macro named FirstTime in the Debugger Prefs
file,
 Macsbug will execute it when it loads. I used a macro that
was
 something like:

 swap; atr; atb shutdownrestart ";atb Newhandle ";g";g";g

 or some such. The swap command caused Macsbug to be
permanently left on
 the second screen. That way when the crash occurred you
could still see
 the last few things Macsbug did. The ";g" following the a-
trap break
 commands tells Macsbug to continue after the break - this is
a "Touch

 and Go" breakpoint.

 One thing you can also do inside a touch and go breakpoint
is set new
 breakpoints. I would take guesses on what traps might be
called in the
 neighborhood of the crash, and have breakpoints set on them
when
 ShutDownRestart was called.

 Then I could leave the Mac rebooting on its own in the lab,
and pop in
 every half an hour to check the log, adjust the breakpoints
and start
 it up again.

 The actual bug took about five months to find and fix.

Twiddling Pixels in the Menu Bar

 Contributed by Dave Fleck, Wacom Technology Corp.,
dfleck@wacom.com

 Here's my debugging tip.

 I do drivers, and you just plain can't set a breakpoint in
ADB
 completion routines (freezes the keyboard so MacsBug is
worthless!).

 So I throw one of the routines below into the routine to see
when a
 piece of code gets executed.

 What does it do? It "lights up" a bar (length dependant on
screen
 resolution) in the menu bar. So if you DotToggle(300); you
get a
 flashing short line in the menu bar.

 void DotOn(long where)
 long *dot;
 dot = (long *)(LMGetScrnBase() + where);
 *dot |= -1;

 void DotOff(long where)
 long *dot;

 dot = (long *)(LMGetScrnBase() + where);
 *dot &= 0;

 void DotToggle(long where)
 long *dot;
 dot = (long *)(LMGetScrnBase() + where);
 *dot ^= -1;

 dave

 Dave Fleck email:dfleck@wacom.com phone:360-750-
8882x154
 Wacom Technology Corp.
sales@wacom.com
 501 S.E. Columbia Shores Blvd, #300
support@wacom.com
 Vancouver, WA 98661
WWW/FTP:wacom.com

-

Forcing Testers to Use Macsbug During Beta Testing

 Contributed by Harold Ekstrom, the ag group, inc.,
ekstrom@aggroup.com.

 Don't you just hate it when beta testers say "it crashes"
but don't
 give you any more information? First, tell them to use the
"stdlog"
 command in MacsBug, then force them to install MacsBug by
checking for
 it during your program's initialization:

 --- DebugUtils.h ---

 #pragma once

 // Debugger types.
 typedef enum DebuggerType
 kNoDebugger,
 kMacsBug,
 kTMON,

 kOtherDebugger
 DebuggerType;

 Boolean GetDebuggerInfo(DebuggerType *outDebuggerType,
 UInt16 *outDebuggerSignature);

 --- DebugUtils.c ---

 // Private defines for some low memory globals.
 #define MacJmp ((Ptr *)0x0120) // MacsBug jumptable
[pointer].
 #define MacJmpByte ((UInt8 *)0x0120) // MacsBug flags in
24 bit mode [byte].
 #define MacJmpFlag ((UInt8 *)0x0BFF) // MacsBug flag
[byte].

 // Debugger flag bits.
 #define kDebuggerInstalledBit 5

 //

 //
 //

 Boolean
 GetDebuggerInfo(
 DebuggerType * outDebuggerType,
 UInt16 * outDebuggerSignature)

 Boolean theResult = false;
 SInt32 theResponse;

 // Initialize return values to defaults.
 *outDebuggerType = kNoDebugger;
 *outDebuggerSignature = ' ';

 if (Gestalt(gestaltAddressingModeAttr, &theResponse)
== noErr)

 UInt16 theDebugFlags;

 // As documented in the "Macsbug Reference &

Debugging Guide", page 412
 // if we have a 32 bit capable Memory Manager,
debugger flags are at 0x0BFF
 // if we have a 24 bit capable Memory Manager,
debugger flags are at 0x0120

 if ((theResponse & (1L << gestalt32BitCapable)) !=
0)
 theDebugFlags = *MacJmpFlag;
 else
 theDebugFlags = *MacJmpByte;

 if ((theDebugFlags & (1L << kDebuggerInstalledBit))
!= 0)

 Ptr theDebuggerEntry;
 Ptr theROMBaseWorld;

 // There is a debugger installed.
 theResult = true;

 // Get the debugger entry.
 theDebuggerEntry = StripAddress(*MacJmp);

 // Get the ROM base.
 theROMBaseWorld =
StripAddress(LMGetROMBase());

 // Compare the debugger entry to the ROM base.
 if (theDebuggerEntry < theROMBaseWorld)

 UInt16 **theDebuggerWorld;

 // It's not a ROM based debugger.
 // Get the debugger world.
 theDebuggerWorld = (UInt16 **) StripAddress(
theDebuggerEntry - sizeof(Ptr));

 // Get the debugger signature.
 *outDebuggerSignature = **theDebuggerWorld;

 // Get the debugger type.
 switch (*outDebuggerSignature)

 case 'MT':
 *outDebuggerType = kMacsBug;

 break;

 case 'WH':
 *outDebuggerType = kTMON;
 break;

 default:
 *outDebuggerType = kOtherDebugger;
 break;

 return theResult;

 Check for a low level debugger like this:

 #if BETA_VERSION
 DebuggerType theDebuggerType;
 UInt16 theDebuggerSig;
 if (!GetDebuggerInfo(&theDebuggerType,
&theDebuggerSig))
 HaltRotateCursor(gRotateCrsr);
 StopAlert(go_get_macsbug_alrt, nil);
 ExitToShell();

 #endif

The Developer University Debugging Class

 Contributed by Malcolm Teas, Blaze Technology,
mhteas@btech.com

 As the instructor and developer of Apple's Developer
University class
 called "Macintosh Debugging Tips and Techniques" I would
like to make
 sure your tips page references this class.

 This class is centered around MacsBug as the easiest to
learn low-level

 debugger. It also covers a multitude of low-level topics
like memory
 maps, subroutine calling protocols, code segments and code
fragments,
 reading (and understanding) assembler for 68K and PPC, and
many more
 areas. One key area is how to avoid bugs in the first place.
All the
 information you need to be able to debug software at the
low-level.

 The class is available from Apple's Developer University.

 Another thing I want to mention is the version number of the
most
 current MacsBug is 6.5.3 (as of this writing). This version
includes
 the PPC commands and features.

 [I have taken this class and recommend it highly - Mike]

Links to Other Macsbug Pages

 o Cool MacsBug Tricks (an informal guide)
 o Macsbug Use
 o Develop Issue 22: Balance of Power: MacsBug for PowerPC
 o Macsbug 6.5.2 Help
 o Macintosh Programming Books
 o Guide to Mac Tools
 o Macintosh Technical Q&A's
 o comp.sys.mac.programming FAQ
 o Macintosh Testing and Quality Control Tools
 o Development and Debugging Tools for the Macintosh

